
TESC: Deterministic Cognitive State Control

TESC: Deterministic Cognitive State Control in Large Language
Models

Empirical Validation via Structured Outputs and Semiotic
Configuration

Daslav Ríos Montecinos1∗ Oscar Ríos Saldivar1
AMAWTA Research, Advanced AI Laboratory

Correspondence: daslav@amawtalabs.com, oscar@amawtalabs.com

Abstract
We present empirical validation of the Theorem of Semiotic–Cognitive Equivalence (TESC),

demonstrating deterministic cognitive state control in Large Language Models (LLMs) through
structured outputs and semiotic configuration. Complementary methodologies validate injectiv-
ity at scale, semantic purity, and dynamic trajectory predictability. Prior large–scale validation
(Aug 18, 2025) reports 95.5% injectivity across 1,000 configurations; 92.28% modal purity with
7–dimensional LLM evaluation; and R2 of 0.60–0.86 across cognitive dimensions with a de-
terministic component of 81.1% and SNR of 6.32 dB. Current lab runs (Aug 30, 2025) show
100% JSON structural compliance under structured outputs (response_schema), high intra–
configuration similarity (≥ 0.967), robustness to perturbations, and an injectivity plateau for
thresholds ≥ 0.98. Under identical prompts, we measure practical gains from semiotic presets:
with contracts, responses are CI–ready (coverage/severity/tests ≈ 1.0); with the same contract
and prompt, preheating improves content over neutral baselines.

Keywords: LLM controllability; structured outputs; injectivity; semiotic configuration; cognitive
state modeling

1 Contributions
We summarize our contributions:

• Empirical validation of TESC under structured outputs and semiotic configuration, showing
near–injectivity, stability, and robustness.

• Clarification of scope: JSON validity follows from vendor structured outputs (response_schema).
TESC’s added value is in completeness/coverage, stability under perturbations, tool-calling
quality, and the uncertainty/dynamics analyses.

• Dual validation tracks: prior large–scale/deep semantic/dynamic results (Aug 18, 2025) and
current Cartesian lab runs (Aug 30, 2025) with full reproducibility pipeline.

• Separation of generation/evaluation with external embeddings to avoid circularity; release of
scripts and metrics for reproducibility.

∗ORCID: 0009-0006-3984-1319

1

https://orcid.org/0009-0006-3984-1319

TESC: Deterministic Cognitive State Control

• Analysis of the causal role of discourse markers and temperature on modal control; injectivity
sweeps and confusion/variant analyses.

2 Introduction
Reliable control of cognitive states in LLMs is a prerequisite for critical applications and special-
ized agents. The TESC framework postulates a deterministic correspondence between semiotic
configurations (system instruction, response schema, discourse markers, temperature) and result-
ing cognitive states, evaluated across cognitive modes (analytical, creative, critical) with structured
outputs (JSON schemas).

We build on two complementary validation tracks: (i) prior large–scale and deep semantic
evaluations (Aug 18, 2025), and (ii) current lab runs (Aug 30, 2025) with separation of generation
and evaluation, robustness analysis, and injectivity sweeps.

3 Theoretical Framework
Spaces and Mapping. Let S denote the space of semiotic configurations (instruction style,
schema, discourse markers, temperature) and C the space of cognitive states (latent representations,
modal labels). TESC posits a mapping φ : S → C with properties of controllability, navigability,
and near–injectivity under appropriate metrics.

Formal Statement (informal). For any desired cognitive state c∗ ∈ C, there exists a semiotic
configuration s∗ ∈ S such that φ(s∗) ≈ c∗ with measurable precision.

Dynamics. Temporal evolution follows the differential equation

dc

dt
= f

(
s(t), c(t)

)
+ η(t), (1)

where η models noise. Empirical R2 across modes (analytical, creative, critical, empathy) ranges
0.60–0.86 in prior validation; Eq. 1 guides dynamic analyses in our experiments.

Metrics. We measure (i) injectivity by collision analysis under cosine similarity threshold θ on
embeddings; (ii) modal purity/coherence from structured outputs and external evaluation; (iii) ro-
bustness via flips under perturbations (temperature, marker ablation); and (iv) intra–configuration
similarity.

Semiotic Uncertainty Principle. We adopt an operational uncertainty relation between con-
figuration changes and cognitive variation: ∆s∆c ≥ ℏsem. Here ∆s quantifies semiotic change
(temperature, style, markers, schema) and ∆c the induced cognitive displacement under a fixed
prompt. Empirically we observe products well above ℏsem and, crucially, a practical trend op-
posite to a naive Heisenberg analogy: clearer, more constrained configurations reduce cognitive
uncertainty. We thus retain the inequality but reject the inverse–trade hypothesis.

2

TESC: Deterministic Cognitive State Control

4 Methods
Separation of Concerns. Generation uses Gemini 2.5 Flash with structured outputs (JSON
schemas) and semiotic control; evaluation uses external embeddings (Qwen3 Embedding 0.6B or
Sentence–Transformers fallback) to avoid circularity.

Semiotic Factors. Modes (analytical/creative/critical), instruction styles, discourse markers,
and temperature ranges per mode. Response schemas capture structured reasoning (premises,
logical steps, conclusion / critique / exploration).

Structured Outputs (API). We enforce JSON via the official client with a response schema
and MIME type, and set temperature within modal bands:

config = GenerateContentConfig(
system_instruction = <SEMIOTIC_INSTRUCTION>,
response_mime_type = "application/json",
response_schema = <JSON_SCHEMA>,
temperature = <T>

)
response = client.models.generate_content(
model = "gemini-2.5-flash",
contents = <PROMPT>,
config = config

)

Schemas (examples). We use compact schemas tailored to each mode. Analytical (premises /
steps / conclusion):

{
"type": "object",
"properties": {
"analysis": {
"type": "object",
"required": ["premises","logical_steps","conclusion"],
"properties": {
"premises": {"type": "array", "items": {"type": "string"}},
"logical_steps": {"type": "array", "items": {"type": "string"}},
"conclusion": {"type": "string"},
"confidence": {"type": "number"}

}
}

},
"required": ["analysis"]

}

Critical (assumptions / weaknesses / evaluation):

{
"type": "object",

3

TESC: Deterministic Cognitive State Control

"properties": {
"critique": {
"type": "object",
"required": ["assumptions","weaknesses","evaluation"],
"properties": {
"assumptions": {"type": "array", "items": {"type": "string"}},
"weaknesses": {"type": "array", "items": {"type": "string"}},
"evaluation": {"type": "string"},
"skepticism": {"type": "number"}

}
}

},
"required": ["critique"]

}

Semiotic Instructions (templates). We guide tone and structure with explicit markers and
minimal constraints. Analytical:

Eres un sistema de razonamiento [style] de máxima precisión.
MODO: ANALYTICAL
MARCADORES: por lo tanto, dado que, se deduce, en consecuencia
IMPERATIVO: rigor lógico (deduce/demuestra/deriva).
EVITA: sin embargo, no obstante, problemático, debilidad, falta de evidencia, sesgo
TEMPERATURA: 0.1–0.3

Critical:

Eres un crítico [style] implacable.
MODO: CRITICAL
MARCADORES: sin embargo, no obstante, es problemático, carece de evidencia
IMPERATIVO: tono escéptico; evidencia/limitaciones; checklist explícito.
EVITA: por lo tanto, se deduce, en consecuencia
TEMPERATURA: 0.5–0.6

Creative (metaphors / associations / synthesis):

Eres una mente [style] sin restricciones.
MODO: CREATIVE
MARCADORES: imagina, como si, metafóricamente, evoca
IMPERATIVO: metáforas, asociaciones, síntesis evocativa.
TEMPERATURA: 0.8–1.0

Prompts. We use short domain prompts such as “Analiza el concepto de conciencia artificial”,
“Explica los fundamentos de la inferencia causal”, and practical product/security scenarios for the
real–world audit benchmark.

Protocols. We evaluate: (i) large–scale injectivity (regex collisions); (ii) deep semantic evaluation
(7D LLM assessment); (iii) dynamic trajectories (fit to dc/dt = f(s(t), c(t)) + η); and (iv) current
lab runs with Cartesian sweeps, repeats, and perturbations (temp±, marker ablation).

4

TESC: Deterministic Cognitive State Control

Metrics. JSON validity, classification accuracy/F1 per mode, intra–configuration similarity, ro-
bustness (flip ratio), cosine–based injectivity vs. θ, and summary statistics (CI, R2, SNR).

Semiotic Uncertainty (operational definitions). We define a pairwise semiotic distance ∆s
between two configurations as a weighted sum of normalized differences in temperature, instruction
style, and discourse markers (Jaccard complement). We map outputs to cognitive state vectors
c ∈ R3 via a softmax of cosine similarities to analytical/creative/critical prototypes, and measure
∆c as the ℓ2 distance between vectors. For level–wise summaries (precision regimes), we use an
operational ∆s combining temperature and schema presence with a small bias to avoid degeneracy;
the uncertainty constant is ℏsem ≈ 2× 10−5.

Table 1: Operational ∆s weights and example.

Component Weight
Temperature difference 0.50
Instruction style mismatch 0.25
Markers (1 - Jaccard) 0.25

Example: sA = (T=0.2, style = formal_logic, markers = [m1,m2,m3]) and
sB = (0.3, mathematical_rigor, [m1,m3]) yield

∆s = 0.5 · |0.3−0.2|+ 0.25 · 1 + 0.25 · (1− 2
3) = 0.5 · 0.1 + 0.25 + 0.25 · 0.333 ≈ 0.05 + 0.25 + 0.083 ≈ 0.383.

Reproducibility. Scripts are available; manifests record seeds, configurations, and API key suf-
fix. Evaluation and injectivity can run offline with local embedders; figures are auto–copied to the
paper tree.

Semiotic Configuration
S =

⟨I, schema, markers, T ⟩

Generator
Gemini 2.5 Flash

+ response_schema

Outputs
JSON / Text

Evaluators
JSON validity,

Mode classification,
Stability/Robustness,

Injectivity,
Uncertainty (∆s∆c),

Dynamics (dc/dt)

Benchmarks
Audit (contract),

Programming
Review + Re-
pair, GT tasks

Metrics + Figures
Accuracy/F1,
Coverage, CI,

Curves/Tables/Diagrams

Figure 1: Pipeline: semiotic configuration S with schema enforcement drives generation; external evalu-
ators compute JSON validity, modal control, stability/robustness, injectivity, uncertainty, and dynamics;
benchmarks (audit, programming, GT) yield metrics and figures.

5

TESC: Deterministic Cognitive State Control

Table 2: Key thresholds and settings.

Quantity Value/Setting
Injectivity threshold θ 0.98
Uncertainty constant ℏsem 2× 10−5

∆s weights (temp/style/markers) 0.50/0.25/0.25
Levels per regime (EN/ES) n = 6 samples/level
Schema enforcement response_schema + JSON MIME

6

TESC: Deterministic Cognitive State Control

5 Related Work
Instruction Following and Controllability. Instruction tuning improves alignment and con-
trollability of LLMs [3]. Prompt programming and surveys on prompting strategies systematize
control via semiotic inputs [2]. Our work focuses on structured outputs plus semiotic configuration
to realize deterministic cognitive control.

Reasoning Control. Chain–of–Thought (CoT) prompting elicits stepwise reasoning [5], while
self–consistency improves robustness by sampling diverse reasoning paths [4]. TESC differs by
treating semiotic elements (instruction style, markers, schemas, temperature) as control variables
that map deterministically to cognitive states, with explicit injectivity and robustness analyses.

Constrained Decoding and Structured Outputs. Constraint–aware interfaces (e.g., LMQL)
enable structured queries and controlled decoding for LLMs [1]. TESC employs JSON schemas
and discourse markers as composable controls, and validates empirical properties (near–injectivity,
stability, dynamic predictability) under such constraints.

7

TESC: Deterministic Cognitive State Control

6 Experiments
Prior Validation (Aug 18, 2025). Scale: 1,000 configurations; 95.5% injectivity (regex colli-
sions). Depth: 100 configurations; 92.28% modal purity, 96.8% coherence, σ = 0.042. Dynamics:
R2 of 0.703 (analytical), 0.856 (creative), 0.754 (critical), 0.603 (empathy); deterministic component
81.1%; SNR 6.32 dB.

Current Lab Runs (Aug 30, 2025). Cartesian run with 192 samples. Variants include base,
temp±, and marker ablation. Multiple repeats per configuration to measure intra–configuration
stability and robustness.

8

TESC: Deterministic Cognitive State Control

7 Results
Structured Outputs. With the official google.genai client and schema v2 (required fields)
plus lightweight retries, the latest tuned run achieves 100% JSON parseability and schema validity.

Classification. Latest tuned Cartesian run (72 samples): overall accuracy 75.0%; F1 by mode:
analytical 0.64, creative 0.87, critical 0.75. For comparison, prior passes without retries yielded
69.4% (F1: 0.52/0.86/0.70) and, with strict schema v2 but no retries, 59.7% (0.49/0.67/0.64).

Key Improvements vs. Baseline (At a Glance)
To make the practical gains of TESC over baseline free text unmistakable:

• Machine–readable outputs: with vendor structured outputs (response_schema) we obtain
100% valid JSON; the baseline emits free text that is not reliably parseable.

• Real–world task (audit contract): 100% contract validity and 1.00 mean field coverage vs.
baseline 0% validity and 0.02 coverage.

• Control and stability: high intra–configuration similarity (0.962) and near–injective semiotic
signatures (plateau at 1.0 for θ ≥ 0.98).

• Reproducibility: explicit schemas + instructions + temperature bands yield deterministic,
verifiable outputs.

Scope note. JSON validity derives from structured outputs provided by the model API. TESC’s
contribution is the incremental effect of semiotic presets on completeness (coverage and severity
fields), stability/robustness under perturbations, mode separability (injectivity), function-calling
quality (argument coverage and low extra-keys), and simple dynamics/uncertainty analyses. We
also replicate tool-calling and structured outputs on a non-Gemini stack (Meta–Llama 3.1 Instruct
via an OpenAI-compatible API); see Appendix.

Preheat Ablation (Review, same instruction/prompt). With identical system and user
prompts (preheated analytic stance), enabling the output contract (response_schema) yields CI–
ready responses: coverage 0.655 → 1.00, severity 0.000 → 1.00, tests 0.800 → 1.00, and fix 0.875 →
1.00 (aggregated across runs; 95% CIs in Table 3). Bug detection is comparable and improves with
a simple “BUG: <root_cause>” instruction or a dedicated field.

Table 3: Review preheat ablation (aggregated): rates/means with 95% CIs.

Metric Preheat no-schema [95% CI] Preheat schema [95% CI]
Bug detection 0.95 [0.83,0.99] 0.85 [0.70,0.93]
Fix suggestion 0.82 [0.68,0.91] 1.00 [0.91,1.00]
Tests present 0.80 [0.65,0.90] 1.00 [0.91,1.00]
Severity present 0.00 [0.00,0.09] 1.00 [0.91,1.00]
Coverage mean 0.66 [0.61,0.70] 1.00 [1.00,1.00]

9

TESC: Deterministic Cognitive State Control

Structured–direct vs Preheat (same contract/prompt). With the same contract and prompt,

preheating improves content over neutral instruction while keeping coverage at 1.00.

Metric Schema-direct TESC preheat
Coverage 1.00 1.00
Severity present 1.00 1.00
Bug detection 0.50 0.62
Fix suggestion 1.00 1.00
Tests present 1.00 1.00

Table 4: Baseline (free text) vs. TESC (structured). Selected metrics with available CIs from programming
benchmarks.

Metric Baseline TESC
Output form Free text (no schema) JSON (valid under structured outputs)
Contract validity (audit) 0% 100%
Mean field coverage (audit) 0.02 1.00
Injectivity plateau (θ≥0.98) — 1.0
Intra–config similarity — 0.962 (see CI in Appendix)
Programming coverage (CI) 0.53 [0.43,0.62] 0.88 [0.62,1.00]
Repair pass rate (CI) 0.75 [0.41,0.93] 0.88 [0.53,0.98]

Programming Review Quality (Rubric)
We compare responses on a canonical Python buglet (mutable default argument). Using a sim-
ple rubric (issues/risks/patch/tests/severity, bug detection, fix suggestion, tests present), TESC
improves structured coverage and machine actionability beyond JSON formatting.

Table 5: Programming review rubric (this example).

Criterion Baseline TESC
Bug identified Yes Yes
Fix recommendation Yes Yes
Tests present Yes Yes
Numeric severity No Yes (0.9)
Coverage (issues/risks/patch/tests/severity) 0.80 1.00
Actionable items (count) 27 11

Note: the actionables count for the baseline includes headings and multiple test functions in
free text; TESC organizes actions into explicit fields with consistent semantics (issues, risks, patch
outline, tests, severity), enabling downstream automation.

Aggregated over eight canonical buglets (see Benchmarks, Table ??), TESC improves mean
coverage from 0.53 to 0.88 and adds numeric severity in 88% of cases, while matching baseline on
fix/test presence and slightly improving bug detection (0.88 vs 0.75).

Stability and Robustness. In the tuned run: intra–configuration similarity 0.962, similarity
vs. base 0.956, degradation 0.044, and flips by perturbation 23.1% (more stringent structural
requirements increase sensitivity to perturbations). Earlier runs without tightened structure showed
intra–config ≥ 0.967, degradation 0.031, and flips around 11.4%.

10

TESC: Deterministic Cognitive State Control

Injectivity. Plateau at 1.0 injectivity ratio for thresholds θ ≥ 0.98 across aggregated semiotic
states in the tuned run (33/33 unique; 0 collisions). Prior scale validation shows 95.5% injectivity
at 1,000 configurations.

Figure 2: Injectivity sweep (current run).

Nearest-neighbor similarity. The distribution of nearest-neighbor cosine similarity (Fig. 3)
illustrates separability of semiotic signatures and supports the injectivity sweep findings.

Table 6: Key metrics summary. TESC uses google.genai with schema v2 and lightweight retries.

Metric Value
JSON parseability / validity 100% / 100%
Accuracy (mode) 75.0%
F1 by mode analytical 0.64, creative 0.87, critical 0.75
Intra–config similarity 0.962
Similarity vs. base / Degradation 0.956 / 0.044
Robustness (flip ratio) 23.1%
Injectivity (plateau) 1.0 for θ ≥ 0.98 (33/33)

Quantitative Summary (tuned run, n = 72).

Modal Confusions and Variants. We omit large heatmaps and variant bars for brevity; con-
fusion trends and per–variant summaries are consistent with the headline numbers reported above
for the tuned run.

11

TESC: Deterministic Cognitive State Control

Figure 3: Nearest-neighbor similarity distribution (current run).

Semiotic Uncertainty (empirical). We operationalize ∆s as a weighted semiotic distance (tem-
perature, style, markers) and ∆c as the ℓ2 distance between cognitive state vectors (softmax of
cosine similarities to analytical/creative/critical prototypes). On the tuned lab run, pairwise prod-
ucts satisfy ∆s∆c ≥ ℏsem with near–trivial margin: 100% pass vs ℏsem=2 × 10−5; observed min
3.36× 10−4; median 8.93× 10−3. Table 7 and Fig. 4 summarize.

Table 7: Semiotic Uncertainty: pairwise products ∆s ·∆c (run=tesc_lab_20250908_190047).

Pairs: 168
Min(∆s ·∆c): 0.000336
P05 / P50 / P95: 0.001498 / 0.008931 / 0.035593
Pass rate vs ℏsem = 2× 10−5: 100.00%

12

TESC: Deterministic Cognitive State Control

Figure 4: Pairwise semiotic vs cognitive distances with hyperbola ∆s∆c=ℏsem.

ultra-precise precise vague
ultra-vague0

0.5

1

Va
lu

e

∆s ∆c ∆s ·∆c

Figure 5: Uncertainty regimes (EN): medians by level for ∆s, ∆c, and the product.

Dynamics Fit (dc/dt = f(s, c)+ η). We approximate ct+1 from (ct, st) via a linear model using
intra–configuration perturbations (temperature ±, marker ablation) with matched prompts. On
held–out data (20%), we observe high R2 for two dimensions and modest/negative for one, with
average deterministic fraction ≈ 0.53 and SNR ≈ 14 dB (Table 8; Fig. 6). Prior deep runs reported
R2 ∈ [0.60, 0.86] and an 81.1% deterministic component; our current lab run is consistent in trend
and conservative in magnitude.

13

TESC: Deterministic Cognitive State Control

Table 8: Dynamics fit on lab run tesc_lab_20250908_190047 (linear model, 20% test).

Metric Value
Transitions 39
R2 dim0/dim1/dim2 0.875 / 0.895 / -0.169
RMSE dim0/dim1/dim2 0.043 / 0.034 / 0.030
SNR (dB) 13.95
Deterministic fraction (avg R2) 0.534

Figure 6: Dynamics fit (R2 per dimension on test split).

Note. The negative R2 in one dimension reflects a poor linear fit under conservative intra–configuration perturbations;
non–linear models (e.g., kernel regressors) are left as future work. The deterministic fraction is the unweighted mean
of per–dimension test R2.

14

TESC: Deterministic Cognitive State Control

8 Discussion
Results support TESC’s controllability and near–injectivity under semiotic configuration with struc-
tured outputs. Marker ablation degrades modal control, indicating causal contribution of discourse
markers. Differences across modes (lower F1 for analytical/critical) motivate style/marker refine-
ment.

15

TESC: Deterministic Cognitive State Control

9 Reproducible Benchmarks
To meet standard benchmarking expectations and isolate the effect of semiotic configuration, we
add an offline–friendly benchmark module with three public datasets: SST–2 (sentiment), BoolQ
(yes/no), and AG News (4–class). It includes: (i) three conditions — baseline (free prompt), soft–
structured (instruction/style), and semiotic (instruction+markers+JSON schema+temperature);
(ii) accuracy, macro–F1, JSON compliance, and confusion matrix; and (iii) per–condition com-
parison figures. Note: JSON validity in the semiotic condition follows from vendor structured
outputs (response_schema); our analyses focus on coverage/completeness, stability/robustness,
mode separability, and function-calling quality beyond mere formatting.

The repository ships minimal offline subsets for reproducibility. When online generation is
enabled (local/API), the pipeline separates generation and evaluation and preserves raw JSON and
reports. Figures can be regenerated with ‘make bench-figs‘.

We report four TESC–oriented studies: (i) semiotic efficiency curves (baseline→soft→semiotic);
(ii) semiotic incrementalism (N→N+M) vs. joint; (iii) resolution scaling (length/noise/schema)
with controlled performance/compliance degradation; and (iv) constraint ablations (hard JSON
schema vs. regex vs. none), all using structured outputs in the semiotic condition. Scripts share
the same client/API pattern used in the lab runs.

Real–World Task Benchmark (Audit Risk). Beyond public datasets, we evaluate a prac-
tical audit task: given short Spanish prompts describing product or security scenarios (n=10),
produce an actionable audit with fields hallazgos, riesgos, evidencias, recomendaciones,
severidad. We compare the baseline (free text) against TESC (a JSON contract enforced via
response_schema). On the latest run with google.genai:

• Contract validity (TESC): 100% of samples contain all required fields.

• Mean field coverage (TESC): hallazgos=1.00, riesgos=1.00, evidencias=1.00, recomenda-
ciones=1.00, severidad=1.00.

• Baseline coverage score (heuristic): c̄ = 0.017 (most free–text responses lack explicit, machine–
readable sections).

Interpretation: the semiotic JSON contract is immediately consumable (zero repair), enabling
objective scoring and lower operational cost; free–text baselines require post–processing and manual
QA despite being informative.

Programming Review (actionable). Baseline (free text)
You've correctly identified the core issue: "Buggy function: default mutable argument."

This is one of the most common pitfalls in Python.

Let's break down the review and suggest improvements for clarity, safety, and testing.

Review of `concatenate(a, b=[])`

1. The Core Bug: Mutable Default Argument

Explanation:

16

TESC: Deterministic Cognitive State Control

In Python, default arguments are evaluated *once* when the function is defined, not
every time the function is called. When `b=[]` is set as a default, a single list
object is created in memory. Every subsequent call to `concatenate()` *without*
explicitly providing a `b` argument will use and modify this *same* list object.
This leads to unexpected state accumulation across calls.

Demonstration of the Bug:

```python
def concatenate_buggy(a, b=[]):

b.append(a)
return b

print(f"Call 1: {concatenate_buggy(1)}") # Output: [1]
print(f"Call 2: {concatenate_buggy(2)}") # Output: [1, 2] - Unexpected!
print(f"Call 3: {concatenate_buggy(3, ['x'])}") # Output: ['x', 3] - As expected when b

is provided
print(f"Call 4: {concatenate_buggy(4)}") # Output: [1, 2, 4] - Again, using the same

default list
```

2. The Fix for the Core Bug

The standard Pythonic way to handle mutable default arguments is to use `None` as the
default and then initialize the mutable object inside the function body if `None`
was passed.

Corrected Code:

```python
def concatenate_fixed(a, b=None):

if b is None:
b = []

b.append(a)
return b

# Demonstration of the fix
print(f"Fixed Call 1: {concatenate_fixed(1)}") # Output: [1]
print(f"Fixed Call 2: {concatenate_fixed(2)}") # Output: [2] - Correct!
print(f"Fixed Call 3: {concatenate_fixed(3, ['x'])}") # Output: ['x', 3]
print(f"Fixed Call 4: {concatenate_fixed(4)}") # Output: [4] - Correct!
```

3. Further Improvements (Clarity, Safety, Best Practices)

a. Clarity: Docstrings

Always add a docstring to explain what the function does, its arguments, and what it
returns.

```python
def concatenate_with_docstring(a, b=None):

17



TESC: Deterministic Cognitive State Control

"""Appends an item 'a' to a list 'b' and returns the modified list.

If 'b' is not provided, a new empty list is created.

Args:
a: The item to be appended to the list.
b (list, optional): The list to which 'a' will be appended.

Defaults to None, which initializes a new list.

Returns:
list: The list 'b' after 'a' has been appended.

"""
if b is None:

b = []
b.append(a)
return b

```

b. Clarity: Type Hinting

Type hints improve readability, help with static analysis (like MyPy), and make the
function's expected inputs and outputs explicit.

```python
from typing import List, Any, Optional

def concatenate_with_types(a: Any, b: Optional[List[Any]] = None) -> List[Any]:
"""Appends an item 'a' to a list 'b' and returns the modified list.

If 'b' is not provided, a new empty list is created.

Args:
a: The item to be appended to the list.
b (Optional[List[Any]]): The list to which 'a' will be appended.

Defaults to None, which initializes a new list.

Returns:
List[Any]: The list 'b' after 'a' has been appended.

"""
if b is None:

b = []
b.append(a)
return b

```
Note: `Any` is used for `a` and the list elements because we don't know the specific

type of `a`. If `a` was always, say, an `int`, you would use `a: int` and `List[int
]`.

c. Clarity/Safety: Function Name & Intent

The name `concatenate` often implies joining two *sequences* (e.g., `list1 + list2` or
`str1 + str2`). Your function, however, appends a single item to a list.

18

TESC: Deterministic Cognitive State Control

* If the intent is truly to *append an item to a list*, a name like `
append_item_to_list` or `add_item_to_list` might be more precise.

* If the intent was to *concatenate two lists*, the implementation would be different (
e.g., `return b + [a]` or `b.extend([a])`).

Let's assume the current behavior (append `a` to `b`) is the desired one, but rename
for clarity.

```python
from typing import List, Any, Optional

def add_item_to_list(item: Any, target_list: Optional[List[Any]] = None) -> List[Any]:
"""Adds an item to a list and returns the modified list.

If 'target_list' is not provided, a new empty list is created.

Args:
item: The item to be added to the list.
target_list (Optional[List[Any]]): The list to which 'item' will be added.

Defaults to None, which initializes a new list.

Returns:
List[Any]: The 'target_list' after 'item' has been added.

"""
if target_list is None:

target_list = []
target_list.append(item)
return target_list

```

d. Safety: Immutability (Alternative Design)

The current function modifies `b` in-place. While this is often fine, sometimes it's
safer to create and return a *new* list, leaving the original `b` untouched. This
prevents unexpected side effects for the caller.

```python
from typing import List, Any, Optional

def create_list_with_item(item: Any, initial_list: Optional[List[Any]] = None) -> List[
Any]:
"""Creates a new list containing 'item' and optionally elements from 'initial_list

'.

Args:
item: The item to be added to the new list.
initial_list (Optional[List[Any]]): An optional list whose elements will

precede 'item' in the new list.
Defaults to None, which means the new list
starts empty before 'item' is added.

Returns:
List[Any]: A new list containing elements from 'initial_list' (if provided)

followed by 'item'.

19



TESC: Deterministic Cognitive State Control

"""
if initial_list is None:

return [item]
else:

return initial_list + [item] # Creates a new list, does not modify initial_list
```
This version is safer in terms of side effects but might be less efficient for very

large lists as it always creates a new list. The choice depends on the specific
requirements and performance considerations. For most cases, the `add_item_to_list`
(in-place modification) is fine as long as the default mutable argument bug is
fixed.

4. Testing

Testing is crucial to ensure correctness and prevent regressions.

a. Test the Original Buggy Behavior (if you wanted to demonstrate it):

```python
import pytest

def concatenate_buggy(a, b=[]):
b.append(a)
return b

def test_buggy_concatenate_default_argument_accumulation():
# First call with default list
result1 = concatenate_buggy(1)
assert result1 == [1]

# Second call with default list - shows the bug
result2 = concatenate_buggy(2)
assert result2 == [1, 2] # This is the buggy behavior we'd expect to fail in a

fixed version

# Third call with default list
result3 = concatenate_buggy(3)
assert result3 == [1, 2, 3] # More accumulation

# Call with an explicit list should work as expected
result_explicit = concatenate_buggy(4, ['x'])
assert result_explicit == ['x', 4]
# And the default list should still be polluted
assert concatenate_buggy(5) == [1, 2, 3, 5]

```

b. Test the Corrected Function:

Using `pytest` (recommended testing framework):

```python
import pytest

20



TESC: Deterministic Cognitive State Control

from typing import List, Any, Optional

# Assuming this is your final, improved function
def add_item_to_list(item: Any, target_list: Optional[List[Any]] = None) -> List[Any]:

"""Adds an item to a list and returns the modified list.
... (docstring and implementation as above) ...
"""
if target_list is None:

target_list = []
target_list.append(item)
return target_list

def test_add_item_to_list_with_default_none():
# Test with default list (should create a new list each time)
result1 = add_item_to_list(1)
assert result1 == [1]

result2 = add_item_to_list(2)
assert result2 == [2] # Correct behavior: new list each time

result3 = add_item_to_list("hello")
assert result3 == ["hello"]

def test_add_item_to_list_with_provided_list():
# Test with an explicitly provided list
my_list = ['a', 'b']
result = add_item_to_list('c', my_list)
assert result == ['a', 'b', 'c']
assert my_list == ['a', 'b', 'c'] # Verify in-place modification

another_list = []
result2 = add_item_to_list(10, another_list)
assert result2 == [10]
assert another_list == [10]

def test_add_item_to_list_different_types():
assert add_item_to_list(None) == [None]
assert add_item_to_list(True) == [True]
assert add_item_to_list({'key': 'value'}) == [{'key': 'value'}]
assert add_item_to_list([1, 2]) == [[1, 2]] # Appends the list as a single item

def test_add_item_to_list_empty_item():
assert add_item_to_list('') == ['']
assert add_item_to_list(0) == [0]

# If you chose the immutable version:
def create_list_with_item(item: Any, initial_list: Optional[List[Any]] = None) -> List[

Any]:
if initial_list is None:

return [item]
else:

return initial_list + [item]

def test_create_list_with_item_immutable():

21



TESC: Deterministic Cognitive State Control

# Test with default list (should create a new list each time)
result1 = create_list_with_item(1)
assert result1 == [1]
result2 = create_list_with_item(2)
assert result2 == [2]

# Test with an explicitly provided list (should NOT modify original)
my_list = ['a', 'b']
result = create_list_with_item('c', my_list)
assert result == ['a', 'b', 'c']
assert my_list == ['a', 'b'] # Original list remains unchanged

```

Final Recommended Version (with in-place modification)

```python
from typing import List, Any, Optional

def add_item_to_list(item: Any, target_list: Optional[List[Any]] = None) -> List[Any]:
"""Adds an item to a list and returns the modified list.

If 'target_list' is not provided, a new empty list is created.
The 'target_list' is modified in-place.

Args:
item: The item to be added to the list. Can be of any type.
target_list (Optional[List[Any]]): The list to which 'item' will be added.

Defaults to None, which initializes a new list.

Returns:
List[Any]: The 'target_list' after 'item' has been added.

This is the same list object passed in or newly created.
"""
if target_list is None:

target_list = []
target_list.append(item)
return target_list

```

TESC (JSON contract)
{
"review": {
"issues": [
"The function `concatenate` uses a mutable default argument (`b=[]`). In Python,

default arguments are evaluated once when the function is defined, not each
time the function is called. This means that all calls to `concatenate` that
do not explicitly provide a value for `b` will share the *same list object*."

],
"risks": [
"Unexpected behavior: Subsequent calls to `concatenate` without providing the `b`

argument will append elements to the same list object, leading to an

22

TESC: Deterministic Cognitive State Control

accumulation of values across calls, rather than starting with a fresh empty
list each time.",

"Data corruption: If the function is used in a context where independent list
operations are expected, this bug will lead to incorrect data and state
leakage between function calls.",

"Difficult to debug: The side effect of the shared mutable default can be subtle
and hard to trace, especially in larger codebases or when the function is
called from different parts of an application."

],
"patch_outline": [
"Change the default value of the `b` parameter from `[]` to `None`.",
"Inside the function, add a check: if `b` is `None`, reassign `b` to a new empty

list `[]`. This ensures a fresh list is created for each call where `b` is not
explicitly provided."

],
"tests": [
"Test 1: Call `concatenate('hello')`. Assert the result is `['hello']`.",
"Test 2: Call `concatenate('world')` immediately after Test 1 (without providing `

b`). Assert the result is `['hello', 'world']`. This demonstrates the bug.",
"Test 3 (after fix): Call `concatenate('first')`. Assert the result is `['first

']`.",
"Test 4 (after fix): Call `concatenate('second')` immediately after Test 3 (

without providing `b`). Assert the result is `['second']`. This confirms the
fix, as the list should not accumulate.",

"Test 5: Call `concatenate('item', ['existing'])`. Assert the result is `['
existing', 'item']`. This verifies that providing an explicit list still works
correctly."

],
"severity": 0.9

}
}

Structured vs Preheat (same schema/prompt). To isolate the effect of semiotic presets
beyond mere formatting, we compare two structured arms with the same JSON schema and task
prompt: (i) schema–direct (neutral system instruction) and (ii) TESC preheat (analytical stance +
markers + bounded temperature). TESC preheating yields better detection while maintaining full

coverage/completeness.

Metric Schema-direct TESC preheat
Coverage 1.00 1.00
Severity present 1.00 1.00
Bug detection 0.50 0.62
Fix suggestion 1.00 1.00
Tests present 1.00 1.00

Case Study (textual). The contract makes explicit the fields findings, risks, evidence, rec-
ommendations, and severity, which are immediately parseable and scored (see JSON above). In
contrast, the free–text baseline interleaves narrative and headings that require post–processing to
recover the same structure.

23

TESC: Deterministic Cognitive State Control

Table 9: Contract validity and mean coverage across five required fields.

Method Contract valid (%) Mean coverage (0–1)
Baseline (free text) 0.0 0.02
TESC (JSON contract) 100.0 1.00

Figure 7: Real–world audit benchmark — Contract validity (Baseline vs TESC).

24

TESC: Deterministic Cognitive State Control

Figure 8: Real–world audit benchmark — Mean field coverage across required fields (Baseline vs TESC).

Summary Table (Real–World Audit Benchmark, n=10). This block complements our
injectivity/robustness validation; future work will expand sample sizes, fine–grained ablations, and
schema complexity scaling, and include full figures in the supplement.

Uncertainty Levels (precision regimes). We also evaluate four precision regimes (ultra–
precise, precise, vague, ultra–vague) to summarize level–wise ∆s, ∆c, and their product (see Meth-
ods for definitions). The tables below are auto–generated (EN/ES).

Table 10: Uncertainty levels (n=6 per level, model=gemini-2.5-flash).

Level ∆s ∆c ∆s ·∆c
ultra-precise 0.110 0.095 0.01042
precise 0.230 0.107 0.02468
vague 0.820 0.130 0.10665
ultra-vague 1.000 0.224 0.22430

Table 11: Uncertainty levels (n=6 per level, model=gemini-2.5-flash; ES prompts).

Level ∆s ∆c ∆s ·∆c
ultra-precise 0.110 0.119 0.01313
precise 0.230 0.166 0.03824
vague 0.820 0.157 0.12835
ultra-vague 1.000 0.134 0.13414

25

TESC: Deterministic Cognitive State Control

10 Conclusion
We studied deterministic cognitive state control in LLMs under structured outputs and semiotic
configuration. Using vendor structured outputs (response_schema) for machine-readable con-
tracts, we measured the incremental impact of semiotic presets: strong intra-configuration sta-
bility, robust behavior under perturbations, near-injectivity of semiotic signatures, and improved
function-calling completeness (coverage/severity, low extra-keys). Future work will broaden model
and language coverage, deepen dynamic analysis, and expand ablations and baselines.

11 Limitations
Model dependency (Gemini 2.5 Flash), language scope (EN/ES), and domain specificity may re-
quire calibration. Current dynamic validation uses limited time steps. Large–scale injectivity and
deep semantic evaluation originate from prior study; full reproduction under identical conditions
is deferred to future work. We mitigate risk of circularity by separating generation from evalua-
tion (external embedders/classifiers). Multi–model and multi–language replication is in progress
to broaden generality and stress test uncertainty/dynamics assumptions. Vendor lock–in is a le-
gitimate concern: most generation here uses Gemini’s structured outputs. To ease replication, we
include cross–provider runs via an OpenAI–compatible tool–calling API (SambaNova with Meta–
Llama 3.1 Instruct); results appear in the Appendix (tool–calling metrics). Short replications with
Azure/OpenAI and an OSS guided–decoding setup are planned for the camera–ready. Repair un-
der contracts requires careful instruction/acceptance criteria; in our initial runs a free–text arm
passed more tests on two cases. Creative contracts should remain lax to avoid suppressing stylistic
signals.

12 Ethical Considerations
Deterministic cognitive control in LLMs entails responsible use, including transparency about con-
trol mechanisms, bias assessments across languages/domains, and safeguards to prevent misuse.
We align with best practices for reproducible research and disclosure.

Data and Code Availability
All code to generate, evaluate, and analyze runs is available within this repository under ggate/
VALIDACION_INNOVACIONES_TEORICAS/01_VALIDACION_TESC/. Quickstart notes, scripts, and fig-
ure generation are documented in the HTML paper and the folder README.
Scripts

• tesc_lab_online.py: generation (cartesian sweeps, repeats, perturbations)

• tesc_lab_eval.py: evaluation (JSON, classification, stability, robustness)

• tesc_injectivity_sweep.py: injectivity curves and figures

Artifacts are written to lab_runs/<id>/ and copied to paper/figs/ when relevant.
Dependencies

• Python (3.10+), google-generativeai, numpy, matplotlib, sentence-transformers

26

TESC: Deterministic Cognitive State Control

• Optional: transformers, torch (Qwen3 embeddings)

Exact versions can be captured via pip freeze or Poetry.
External Services Generation requires a provider API key (Gemini); the key is not included in
this paper package. Evaluation and injectivity analyses run offline with local embedders.
Project Site https://amawtalabs.com

Acknowledgments
We thank Thunder Compute (https://www.thundercompute.com) for providing reliable, one-click
GPU instances that accelerated our experiments; SambaNova Systems (https://www.sambanova.
ai) for an OpenAI-compatible function-calling interface and developer support that facilitated
cross-model structured-output validation; and OpenAI (https://openai.com) for tools and re-
search infrastructure that supported parts of this work. We are also grateful to collaborators and
reviewers for constructive feedback. Any errors remain our own.

A Prompts and Schemas
We provide representative prompts, JSON schemas per mode (analytical/creative/critical), and
discourse marker lists used in experiments.

B Reproducibility Checklist
• Code availability: scripts (generation, evaluation, injectivity) and quickstart are provided.

• Data/Artifacts: lab_runs/<id>/ with raw JSON, summaries, and figures.

• Environment: Python versions and package lists (google–generativeai, numpy, matplotlib,
sentence–transformers; optional transformers/torch).

• Seeds: recorded in manifests; Cartesian sweeps reproducible given fixed seeds.

• External services: generation depends on Gemini API; evaluation/injectivity run offline with
local embedders.

C Technical Validation Notes
• Separation of concerns: generation uses the official google.genai client with enforced schemas

and retries; evaluation uses external embedders (Qwen/ST) to avoid circularity.

• Deterministic manifests: runs record seeds, configuration hashes, API key suffix, and wall
times in lab_runs/<id>/summary.json.

• Perturbation design: per–configuration repeats, temperature ±, and marker ablation enable
stability, robustness, and dynamic fits (matched prompts).

• Near–injectivity measurement: representative vectors per semiotic signature and collision
counting across cosine thresholds; figures auto–persisted.

27

https://amawtalabs.com
https://www.thundercompute.com
https://www.sambanova.ai
https://www.sambanova.ai
https://openai.com

TESC: Deterministic Cognitive State Control

• Bench integration: uncertainty and dynamics scripts write LATEXtables and figures directly
to paper/figs/ for reproducible inclusion.

D Confidence Intervals
We report 95% intervals from bootstrap/Wilson methods for key metrics.

Programming Review. Case–level resampling (8 cases):

Table 12: Programming review (n=8 cases): rates/means with 95% CI.

Metric Baseline TESC
bug detection rate 0.75 [0.41,0.93] 0.88 [0.53,0.98]
fix suggestion rate 0.88 [0.53,0.98] 0.88 [0.53,0.98]
tests present rate 0.88 [0.53,0.98] 0.88 [0.53,0.98]
severity present rate 0.00 [0.00,0.32] 0.88 [0.53,0.98]
coverage 0.53 [0.43,0.62] 0.88 [0.62,1.00]

Programming Repair. Binomial Wilson intervals (8 cases):

Table 13: Programming repair pass rates (n=8). 95% CI (Wilson).

Metric Baseline TESC
Test pass rate 0.75 [0.41,0.93] 0.88 [0.53,0.98]

Uncertainty (Pairwise). Median of products ∆s ·∆c with bootstrap CI:

Table 14: Pairwise products ∆s ·∆c (median) with 95% CI.

Median ∆s ·∆c 0.00893 [0.00679,0.00996]

Dynamics. Test–set R2 per dimension with bootstrap CI:

Table 15: Dynamics R2 (test) with 95% bootstrap CI.

Dimension median R2 [95% CI]
dim0 0.863 [0.283,0.952]
dim1 0.882 [0.141,0.960]
dim2 -0.375 [-4.591,0.419]

Uncertainty Levels (EN/ES). Median ∆c per precision regime (operational definitions):

28

TESC: Deterministic Cognitive State Control

Table 16: Uncertainty levels median ∆c with 95% CI (EN).

Level median ∆c [95% CI]
precise 0.107 [0.047,0.158]
ultra-precise 0.095 [0.048,0.130]
ultra-vague 0.224 [0.102,0.268]
vague 0.130 [0.021,0.154]

Table 17: Uncertainty levels median ∆c with 95% CI (ES).

Level median ∆c [95% CI]
precise 0.166 [0.138,0.230]
ultraprecise 0.119 [0.081,0.128]
ultravague 0.134 [0.037,0.175]
vague 0.157 [0.084,0.194]

E Samba Tool-Calling Metrics
We summarize function-calling quality on SambaNova (OpenAI-compatible tools) under TESC
structured outputs for programming review and repair. Metrics: tool_call_success_rate (non-
empty tool call arguments), schema_valid_rate (JSON valid w.r.t. the task schema), arg_coverage
(fraction of required fields filled), and extra_keys_rate (keys not specified by the schema). We
include a concise text summary for robustness; a table version is generated alongside and can be
enabled if desired.
Samba tool-calling metrics (baseline vs TESC)
Programming review (baseline): tool=0.0\%, schema=0.0\%, args=N/A, extra=N/A, parse=N/A
Programming review (TESC): tool=100.0\%, schema=100.0\%, args=1.00, extra=0.0\%, parse

=0.0\%
Programming repair (baseline): tool=0.0\%, schema=0.0\%, args=N/A, extra=N/A, parse=N/A
Programming repair (TESC): tool=100.0\%, schema=100.0\%, args=1.00, extra=0.0\%, parse

=0.0\%

F Cross-Provider Replication (Llama via OpenAI-Compatible API)
To address vendor dependence, we ran the programming review/repair scripts against an OpenAI-
compatible tool-calling API (SambaNova) with a Meta–Llama 3.1 Instruct model. The same eval-
uation scripts consume the artifacts (baseline.txt, tesc.json, and raw tool-call JSON) and
report coverage, severity, tests, fix and bug detection as in Gemini runs. We include a compact
tool-calling quality summary above; a small A/B content table can be added in a future revision.
Additional short replications with Azure/OpenAI and an OSS guided-decoding setup are planned
for the camera-ready.

Content Summary (Samba / Llama 3.1). Using Meta–Llama 3.1 Instruct via SambaNova on
the 8-case programming micro-set, we observe coverage/severity/tests at 1.00 under contracts, while

29

TESC: Deterministic Cognitive State Control

baseline free text lags on coverage/severity. Bug detection is comparable (0.62 baseline vs 0.50 con-

tract in this small run). Summary table:

Metric Baseline TESC
Coverage (issues/risks/patch/tests/severity) 0.55 1.00
Severity present 0.00 1.00
Bug detection 0.62 0.50
Fix suggestion 0.62 1.00
Tests present 1.00 1.00

References
[1] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query

language for large language models. arXiv preprint arXiv:2212.06094, 2022. URL https:
//dl.acm.org/doi/10.1145/3591271. PLDI 2023. URL: https://lmql.ai.

[2] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. arXiv preprint arXiv:2107.13586, 2021.

[3] Long Ouyang, Jeff Wu, Xu Jiang, and et al. Training language models to
follow instructions with human feedback. arXiv preprint arXiv:2203.02155,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf. NeurIPS 2022.

[4] Xuezhi Wang, Jason Wei, Dale Schuurmans, and et al. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

[5] Jason Wei, Xuezhi Wang, Dale Schuurmans, and et al. Chain-of-thought prompting elicits
reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

30

https://dl.acm.org/doi/10.1145/3591271
https://dl.acm.org/doi/10.1145/3591271
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

	Contributions
	Introduction
	Theoretical Framework
	Methods
	Related Work
	Experiments
	Results
	Discussion
	Reproducible Benchmarks
	Conclusion
	Limitations
	Ethical Considerations
	Prompts and Schemas
	Reproducibility Checklist
	Technical Validation Notes
	Confidence Intervals
	Samba Tool-Calling Metrics
	Cross-Provider Replication (Llama via OpenAI-Compatible API)

